Experimental Study Differential effects of prolonged isoflurane anesthesia on plasma, extracellular, and CSF glutamate, neuronal activity, I-Mk801 NMDA receptor binding, and brain edema in traumatic brain-injured rats

نویسندگان

  • J. F. Stover
  • O. W. Sakowitz
  • S. N. Kroppenstedt
  • U. W. Thomale
  • O. S. Kempski
  • G. Flügge
  • A. W. Unterberg
چکیده

Background. Volatile anesthetics reduce neuronal excitation and cerebral metabolism but can also increase intracellular water accumulation in normal and injured brains. While attenuation of neuronal excitation and glutamate release are beneficial under pathological conditions, any increase in edema formation should be avoided. In the present study we investigated duration-dependent effects of the commonly used isoflurane=nitrous oxide (N2O) anesthesia on EEG activity, specific NMDA receptor binding, extracellular, CSF, and plasma glutamate, and cerebral water content in brain-injured rats subjected to short (30 minutes) or prolonged (4 hours) anesthesia. Methods. Before controlled cortical impact injury (CCI), during prolonged (4–8 hours) or short anesthesia (7.5–8 hours after CCI), and before brain removal, changes in neuronal activity were determined by quantitative EEG analysis and glutamate was measured in arterial plasma. Brains were processed to determine acute and persisting changes in cerebral water content and I-Mk801 NMDA receptor binding at 8 and 32 hours after CCI, i.e., immediately or 24 hours after short or prolonged anesthesia. During prolonged anesthesia glutamate was measured via microdialysis within the cortical contusion. CSF was sampled before brain removal. Findings. Prolonged isoflurane (1.8 vol%) anesthesia significantly increased EEG activity, plasma, cortical extracellular, and CSF glutamate, cortical and hippocampal I-Mk801 NMDA receptor binding, and cerebral water content in brain-injured rats. These changes were partially reversible within 24 hours after prolonged anesthesia. At 24 hours, CSF glutamate was significantly reduced following long isoflurane anesthesia compared to rats previously subjected to short anesthesia despite an earlier significant increase. Conclusions. The partially reversible increases in EEG activity, IMk801 NMDA receptor binding, cerebral water content, plasma and CSF glutamate appear important for physiological, pathophysiological, and pharmacological studies requiring prolonged anesthesia with isoflurane. Increases in extracellular cortical and plasma glutamate could contribute to acute aggravation of underlying tissue damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of aquaporin 4 and N-methyl-D-aspartate NMDA receptor 1 in traumatic brain injury of rats

Objective(s): -methyl-D-aspartate NMDA receptor (NMDAR) and aquaporin 4 (AQP4) are involved in the molecular cascade of edema after traumatic brain injury (TBI) and are potential targets of studies in pharmacology and medicine. However, their association and interactions are still unknown.Materials and Methods: We established a rat TBI model in this study. The cellular distribution patterns of ...

متن کامل

Effects of sex steroid hormones on neuromedin S and neuromedin U2 receptor expression following experimental traumatic brain injury

Objective(s): Neuroprotective effects of female gonadal steroids are mediated through several pathways involving multiple peptides and receptors after traumatic brain injury (TBI). Two of these peptides are including the regulatory peptides neuromedin U (NMU) and neuromedin S (NMS), and their common receptor neuromedin U2 receptor (NMUR2). This study investigates the effects of physiological do...

متن کامل

Role of melatonin receptors in the effect of estrogen on brain edema, intracranial pressure and expression of aquaporin 4 after traumatic brain injury

Objective(s): Traumatic brain injury (TBI) is one of the most common causes of death and disability in modern societies. The role of steroids and melatonin is recognized as a neuroprotective factor in traumatic injuries. This study examined the role of melatonin receptors in the neuroprotective effects of estrogen. Materials and Methods: Seventy female ovariectomized Wistar rats were divided in...

متن کامل

Effect of Nesfatin-1 on Permeability of Blood Brain Barrier, Neurological Score and Brain Edema after Traumatic Brain Injury in Male Rats: A Behavioral and Biochemical Study

Background and purpose: Traumatic brain injury (TBI) is one of the most complex diseases of the central nervous system (CNS). Nesfatin is an 82-amino acid effective polypeptide in CNS. In this study, we investigated the role of nesfatin in neuron protection in the process of diffuse concussion in rats and also its effect on the level of matrix metalloproteinase-9. Materials and methods: In thi...

متن کامل

Neuroprotective Effects of Berberine After Severe Traumatic Brain Injury in Male Rats: The Role of IL-1β and IL 10

 Background and purpose: Traumatic brain injury (TBI) is the leading cause of death in young people. Berberine is a flavonoid rich in barberries and many traditional Iranian herbal remedies that could be used in treatment of neurodegenerative diseases. These properties make it a viable treatment for neurodegenerative diseases. Therefore, this study intended to investigate the neuroprotective ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004